If it's not what You are looking for type in the equation solver your own equation and let us solve it.
75x^2=300
We move all terms to the left:
75x^2-(300)=0
a = 75; b = 0; c = -300;
Δ = b2-4ac
Δ = 02-4·75·(-300)
Δ = 90000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{90000}=300$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-300}{2*75}=\frac{-300}{150} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+300}{2*75}=\frac{300}{150} =2 $
| 15/x+2=9/x | | 12/m=18/20 | | 15=23+x | | 236,532+218,341+x/3=215,325 | | 8-5(9x+4)=2. | | (x+1)(x-7)=x² | | f/6=7 | | 7/3x+1/3=6+5/3x | | D=9/4(m-17) | | 3x+4=5x-10-x | | -5(3x+7)-6=-46+52 | | n+7/2=1 | | -52/5=9y | | 12^(-7x)=4 | | (a+3)(a+1)-4(a+1)=0 | | v+38=992 | | 9m-4m=40 | | (3x+19)+(5x-1)+90=180 | | X^+(x-1)=19 | | d-805=-265 | | x+2=2/9 | | -1/2x-2=-5 | | 4/3p=8p+15 | | 4/3p=8p | | 7×+3=9x-3-2 | | m-54=30 | | t/10=−2t−4 | | 7u-7+2(3u+1)=-2(u+5) | | k4− 1=2 | | -18r+2r=r | | 6=5w+w | | 3.5/1=2.5/x |